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Abstract

The accuracy of forecast error correlation functions prescribed in an

optimal interpolation (OI) analysis system determines, to a large extent, the

analysis accuracy. The height-height forecast error correlation function used

in the OI system at NMC is a Gaussian function of approximate spherical distance.

One approximation is used equatorward of 70
° latitude and another is used pole-

ward of 700. Since the wind-height and wind-wind correlation functions are

derived from the height-height correlation via a geostrophic assumption, they

depend on first and second derivatives of the approximate spherical distance.

Derivatives of an approximation are generally less accurate than the approxima-

tion itself.

We show that at 70° latitude the wind-wind cross-correlation function

used operationally equatorward of 70
° latitude has roughly twice the amplitude

of the same correlation function based on the exact spherical distance. At

lower latitudes, the correlations based on exact and approximate spherical

distances are more comparable. We have not compared the approximate formulation

used operationally poleward of 70° with the exact spherical distance formulation.

The approximate distance formulations have been used operationally for the

sake of computational efficiency. We introduce a different approximation to

the spherical distance which results in more computational work than the opera-

tional formulation, but less work than an exact spherical distance formulation.

We prove rigorously that all the correlations based on the new approximation

differ from those based on the exact spherical distance by a negligible amount.

The new approximate formulation is accurate at all latitudes, and therefore

dispenses with the need for separate computations in low and high latitudes.
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I. Introduction

The accuracy of forecast error correlation functions prescribed in an

optimal interpolation (OI) analysis system determines, to a large extent, the

analysis accuracy. In the global OI system at NMC (Bergman, 1979; McPherson,

et.al., 1979), the correlation C
z z between height errors at two points

Pl=( li 4 p ) and P2=( ?2,'z. s ) is specified as a product

C (P~It) P-L)(1+;bz +) F jPI
in which the horizontal function is of the form

Here b is a positive constant and the distance function s depends on Ag, 4Y 2

and Ax . The wind-height and wind-wind correlations are derived from Czz by

assuming that forecast errors are geostrophic.

In this note, we derive and compare the correlation functions - height-

height, wind-height, and wind-wind - obtained for four different distance

functions, denoted by so, S1, s2 and s3. These functions are given by

COS SO C OS (+t+ , Cos 4' Cos 4^tl-CS(1^) 

O S . ct- COS(14-- ) - COS C05 1 os(

1 2.~ ~ ~ ~ ~ ~ ~ ~~~Z 2 4 ~Z
2. S = 1- cos(4~,-)] · cos4,co5LI-co~(~,,-~ ,

2. co's ( q )
53 = ( + 1~ + Z) (?^ -A1Y CosX + 
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We refer to so as the exact spherical distance between points (( \,4 ) and

~( ~ )' It is actually the angle subtended at the center of a sphere by the

two points; a so, with a being the earth radius, is the spherical, or great-

circle, distance between the points. The straight-line distance (through the

sphere) is given by a s1. To our knowledge, so has never been used in an

operational OI system. The straight-line distance s1 is used by the European

Centre for Medium Range Weather Forecasts' OI analysis procedure (Lorenc,

personal communication). The function s2 was introduced by Schlatter (1975),

and was used equatorward of 70° in the global OI system at NMC until recently.

The approximation s3, in which 4~o is locally constant, is currently used

equatorward of 70° in the global system (Kistler, personal communication). A

separate approximation, which we do not study, is used at NMC poleward of 70°,

since s2 and S3 are known to approximate so poorly past about 70°. A similar

approximation is used by the OI analysis system at the Canadian Meteorological

Centre everywhere on its hemispheric polar-stereographic analysis grid (Ruther-

ford, 1976).

The motivation for this work is that if two functions differ by a small

amount, it is not necessarily true that their derivatives do also. The wind-

height and wind-wind correlations depend on first and second derivatives of s

as a result of the geostrophic assumption. In fact, we found that the height-

height correlations based on each of the functions si only differ by a negligible

amount, while for the wind-height correlations and wind-wind correlations the

values obtained using s2 or s3 differ more substantially from those obtained

using so . The differences are small in low latitudes, and generally increase

with latitude. The largest differences were obtained for the wind-wind cross-

correlation Cuv at 70°. In this case, the correlations based on either s or

S3 are roughly double the correlations based on so.

2



The approximate distance formulas s2 and s3 have been used operationally

at NMC mostly for the sake of computational efficiency. Indeed, the correlation

formulas we derive based on so are somewhat more complicated than those we derive

based on s2 and s3. We have introduced approximation s1 as an alternative.

We show, first of all, that the correlation formulas to which sl leads are of

about the same complexity as those based on s2. We also prove rigorously

that the correlations based on s1 differ from those based on so by a

negigible amount: less than 0.00056 for the height-height correlations, 0.0063

for the wind-height correlations, and 0.016 for the wind-wind correlations.

These bounds are valid at all latitudes: approximation s1 is a uniform

approximation and dispenses with the need for separate computations in low and

high latitudes.

Our derivation of the correlation formulas for so, s1, s2 and s3 is

based on the general correlation formulas obtained in the companion paper

(Cohn and Morone, 1984). Those formulas include the effect of the spatial

variability of height-field forecast error variances upon the forecast error

correlations themselves. In the present paper we have retained the terms

accounting for this effect; otherwise the correlation formulas we derive for s2

and s3 are algebraically equivalent to those which have been used operationally.

Furthermore, the aforementioned bounds on the differences between correlations

based on s1 and those based on so hold regardless of the size of the contribu-

tion due to these terms. Neglect of these terms, as is done in current opera-

tional practice, would improve the bounds.

The general formulas from the companion paper upon which the present work

is based are summarized in Section II. In Section III we derive the correlation

formulas for each of so , s1, s2 and s3 in turn, and we prove the bounds on

differences between correlations based on s1 and those based on so. Plots
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of correlation functions based on so, s2 and s3 are discussed in Section IV.

Conclusions follow in Section V. Inequalities needed for the error bounds of

Section III are proven in an Appendix.

The reader who is interested primarily in comparing the correlation

functions arising from the various distance formulas may examine (3.17, 3.10),

which give the formulas for so; (3.23, 3.10) for sl; (3.23, 3.34) for s2;

and (3.23, 3.37) for S3.

II. Summary of Geostrophic Forecast Error Covariance Relationships

Here we summarize the general relationships among forecast error covariances

which were derived in the companion paper. These relationships are based upon one

assumption only, that the wind-field forecast errors ui and vi, at a point Pi
=

(Ais +zpZ), are related geostrophically to the height-field forecast error Zi

Ad,~ CtiVL amA L(2.1a,b)

where

Cti4) .9 (2.2a,b)

Here 6%~[ and Pi are the longitude, latitude and pressure coordinates of point

Pi, g is the gravitational acceleration, a is the radius of the earth, fi is

the Coriolis parameter, and Gi is the so-called coefficient of geostrophy.

Under assumption (2.1, 2.2), the wind-field forecast error standard

deviations and are given by

4F + Cb.LILIL = P I (2.3a)
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. a L +* ( -iO ' ) ]'/IL
(2.3b)2 Zlog CA 1

)Ai OAi

where Qe is the height-field forecast error standard deviation and Czz=

cZZ(Pi; Pj) is the three-dimensional correlation between height-field fore-

cast errors at Pi and Pj.

Defining quantities i and Si by

) 413 C z

D .i2 >
/ ---2.4a)I

+I 1\a)+ (2. 4a)
p .prJ 

Si = (s5i3/ pi) [ (2.4b)

and setting i=1, j=2, the wind-height forecast error correlations CUz, CZu,

CVZ, CZV, and the wind-wind forecast error correlations Cuv, C
v u, Cuu and Cvv

are given by

C~. u/

/¢t

Ctu/c t

cV /c:t I CLE

C V/C 'a-

l £.( °3

1 1o C t~

= W}S 'a 

( 1

=- SI - kc?.t
I 6I 

~,IxD3zl

S7c , a~z

B 143 Gq e4A-
I+ - _I

'-I- 

C;3 i g I

b ?,

C'U C v
_ _-

Ce i 'El

5

(2.5a)

(2.5b)

(2.5c)
7

I
(2.5d)

(2.5e)

W; - (,5 , Cki)

+ ( B 1035 L --Z/z
+ A 

c% Z 1o3q Cet
la n c I



VU 3, lo C"- A, ) ~C V /c = S L 

C/C it = 11,ep 

CV /C Be = j} C) I I03 ,,
I 2.~AI~'~Z

+ 

C.U: C ~

C a+ CZ tC2Ca

III. Covariance Relationships for Various Spherical Distance Approximations

We derive in this section the relationships among forecast error covariances,

based on the assumptions that forecast errors are geostrophic (2.1) and that

the height-height forecast error correlation C~z is of the form

wC here Vzz is an arbitrary correlation funcz) Htion of twoA pressure levels, and(3.1)

where Vzz is an arbitrary correlation function of two pressure levels, and

52
kI..I7: = e -Zb (3.2)

Here the dimensionless constant b is given by

b = 2 t /d- (3.3)

where a=6371 km is the radius of the earth and do is the correlation distance.

C 13Currently at NMC, d =-x 1 kin, so that
o01Z

b= 1/2. (3.4)
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The distance function s = s ( 61f+1 ; Z9 +Z ) in (3.2) will be either the

angle subtended at the center of the sphere by points ( tl 1 A) and ( 6 z hi ).

or an approximation to that angle. That is, a s will be either the spherical

distance between two points or an approximation thereof.

III.1. Exact Spherical Distance

The angle so subtended at the center of the earth by two points ( fig +c),

( ~z5 + ) satisfies 0 S- s 0o r- T and is given by

Cos s0 Sir i4, S)nf; + CoS 4I CoS CfZ Cos ( (\Z- ) (3.5a)

or

(OS So, = C05(4+ 1 -4 f) - COS +CO_+Z ll (3.5b)

this so is also the spherical, or great-circle, distance between two points

on the unit sphere. We prefer formula (3.5b) from a computational standpoint:

it requires less trigonometric function evaluation (or table lookup) to calculate

so than does (3.5a). The formulas below to which (3.5b) leads are also simpli-

fied somewhat.

We calculate in this subsection the standard deviations (2.3) and

correlations (2.5) based on the height-height correlation (3.1, 3.2), with s

given by s = so. To do so, we must evaluate the first and second derivatives of

log Czz. The form of (3.1) immediately implies that

logC a (3.6a)
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and

a) 105 Cl a tov H Fe
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1al- If (3.6b)

where and 7 denote any of the coordinates iN, £ . H since for

example:

_ 5 IA
as 

H
Hlavie

With s = so given by (3.5b), the calculation is simplified by expressing

the derivatives of log C zz in terms of those of cos so . From (3.6a) and

(3.2), we have

c I,,O CEE

and since

COS SO

I = - Sin SO SC)5

we find that

B 102, _it b %(So)

provided so y 0 or T , where

X(So) -- So
5i,, 5o

8

CoS So

as (3.7a)

(3.7b)

SHAHDE A j7e El _

-5
HIto_ I SCOle

Cat byF

) IO' C 

a 5

- - bs o 54



Differentiating (3.7a) gives

ow fo = b (i(so)
Now from (3.7b),

coS S,

ay
a l co5 So

= b %( S.) ' acoS S.
- '3 )S

b S. I'n 5 0- 50 COS S5c

- s1, S On'-- 

b v(s.) Co 5o 'a cos S

') 

v (S.) = I5Iq o - S, Co5 So

5I'n 3 So

Formulas (3.7) and (3.8) express the derivatives of log C
zz in terms of

those of cos so. The derivatives of cos so are calculated directly from

(3.5b), as follows:

' CoS 5S

) COS So

' co5 So

FT, s

) co - S.

2'C05 Se

Z COS S.

DA, )'")2-

= F' U

= FU

(3.9a)

(3.9b)

= F vZ cos 4

= F' COS S= Fv Cos$+L

UV

(3.9c)

(3.9d)

CoS + z (3.9e)

(3.9f)= F vL C 4

9

? 5; ol SO soCo S S,

=so that .

so that

Di IOq C*

where

coS So

'~.,?

p (3.8a)

(3.8b)

+ b a



Co5 (3.9g)

Cos SSo V
a--C$ S = F Cos , cos 4. ~ (3.9h)

where we have introduced the notation (for reasons to become clear momentarily)

FT -:U = + Smn -CoS 4 1 [ I - Cos ( )] (3.10a)

F +Siri5; (4~ 4 ~.) + cos Q S4in s f' L?2 W - cos ( ,^)1 (3.10b)
FVq -5 cos o s- in (S'j) I - (3.10bc)

F ~= ±cns4 5,s1r1 ^,au (3.l0d)

F" -CO sin, ~o<~ -Fuv jo - -Xn 2.}~ b\,) t (3.10c)

F V= + 5DS, As, ) (3-10f)

F = + cos( -'S ir ) 5 -(A(I) (3.1Og)

F V = + cos (,Z-.L) (3.1Oh)

We are now ready to evaluate the variance and correlation relationships

(2.3, 2.5). Notice first that, away from the poles, the first six functions

F'' above all approach zero as point P2 :( ¢ 4. 4. ) approaches point P1= 
( ,)'

while Fuu and Fvv approach one. The first derivatives of cos so (3.9a-d),

therefore approach zero as P2 -> P1, and since
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I.b;A V (
.s-. 0

5

=..wO5) 5 
= I (3.1 la)

is finite, (3.7a) shows that the first derivatives of log Czz also approach

zero as P2 -p P1. (Indeed they must: see Eq. (2.10Ob) of the companion paper.)

Now, since

Z i v S - S CO

5 -55
)5SS

= I

5

is finite, we have from (3.8a) that

1. Io5 C

------

DZCOs S.

a) '1 C)

(3.12)= P Pb
P2. +'Pi

Equations (3.9e-h, 3.10e-h) then imply that the mixed second derivatives of log

CZZ approach zero as P2--* P1, while

Ž 2 i o. s C E
(3. 1 3a)P -"'I2. IP

and

= b cos0-21 (3.13b)

From (3.13) and (2.2), we finally have for the wind forecast error standard

tions (2.3),

--- _ - +u ' iL 9 (3.14a)

i . , l - [i +( FJ' _., )^:~,: T (3.14b)Ii L '' L ) ' j
L- I 1+j t I L '9 ° ." 4-P' .- l '1

11

11~p L (3.1 lb)

Ql I

PL71 pi

deviat

Y.( S) = JQLs
S 5'r0

,L I o CIZ

PLP.L MLs DA



Similarly, the factors bL and defined in (2.4) become

L = ( 5 13n oM; ) I rb [ l - ')2

I Cosc +\A

2. -/,

We also define the quantities

)' = )-Y = (s;'nX; = -

L =

* I I¢S T. -a -1

-4) (-1 +i 

I ) lo v? )X-'/Sscosab- .
4(Yc C,; a N[lj;~ ¥1

Finally, from (3.7a), (3.8a), and (3.9a-h) and (3.16a,b), the forecast

error correlations (2.5) become

10 a ao~1~~~~. 7
Tb- 2~ C~ I

1oo+ ~ ~ ~ -~ ~-L 2) ' J

_____ -1
5I OATa

' I 1 1 . . ~ . 1- S$t 1sA (S.) F

-}= ltsz s(5.) Fr - r

Cos C) 2

C:V

Cl,ScV5 C + C

(3.17a)

(3.17b)

(3.17c)

(3.17d)

(3.17e)
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(3.15a)

(3.15b)

(3.16a)

(3.16b)

C lc,

/C2

C"7,c IV/ C."

cnvf ,

i

I + ( T

?

z11 [ b $(S%) f

=, 1 I'f-T(s.) F I -

P) Il

= ,'g' $(so)Fu"



~~- r -
CU IC vo. L S) ts) V Cam T (3-17f)

C l/Cl f 32 1 j( F+ -r(s, - toFl]-c% Cal (3.17g)

C'~ ~ ~ C
V~~ ~~ , C VZCIC / C3{ ' 3 S | T (SO) f - r ( s , f F A ( 3.17h)

In these formulas, and are given by (3.16a,b), q (so) and r (so) are

given by (3.7b) and (3.8b), and the functions F-- are given by (3.10a-h).

Notice that gradients of are needed in the standard deviation formulas

(3.14) and corelation formulas (3.17) only in the form

t r)I %t;' k 1 8° 
TV~ ~ ' %T cos 4 ~

III.2. Straight-line distance

It is well-known that forecast error correlations are nearly zero past

distances on the order of 1000 km. For example, HZZ given by (3.2, 3.3) assumes

the value HZZ = e 4= 0.018 at distance as = 2do. One expects that if s = s

given by (3.5) is approximated by another function s = s1 which nearly agrees

with so when so is small, then one can obtain standard deviation and correla-

tion formulas that are simpler than (3.14, 3.17) but which yield nearly the

same values.

A simple way to do this is to use the fact that

Cos = -s + 0( )

13



so that if we define s1 by

lC z Sl = top 2 b ~~'(3.18a)

i.e.,

2so =t Cos (+-+) + %0 -s~ 2t O -z (3. 18b)

then s1 is a good approximation to so when so is small. While it is not

generally true that if two functions differ by a small amount, then their

derivatives also do, we show that when s = s1 in (3.2), the resulting standard

deviations and correlations are indeed nearly identical to those given by (3.14,

3.17).

To begin, we point out that s1 is in fact the straight-line distance

(through the sphere) between points P1= ( , ) and P2= (IzAz). The

rectangular coordinates of a point on the unit sphere are (x, y, z)=(fC.5 ,

T¥i( ~ , 5;- ), where r- COS . The straight-line distance s between P1

and P2 is therefore given by

5= (( _ + ( ,f )L

- CoS +, C5' c, - Cos cos° , co. (cos A S+n c°- co5 S z

cost+ cos 2 a\, 2 cD5 +, CS CO cos COS ?i2 + CczW+ 1 ca? At

+ cos0 5 seen' 2 cos4 sinŽ cos+L s'? *5%OS 2.S"A-

+ Slnt Ql 2 $;ndp} 5;1iz +
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-2 r C0 - Cos 5 C0 CS Cos S IV1 5W? - S In 4, iLl

-z \~ -Co$s tCOSC 2 CO$5 (C1 - -

Al,~ c (,-t2 )+tos~1Cosz[ Cos OhlZzzl 1

which is equivalent to (3.18b).

Since sI is the straight-line distance, it always underestimates the

spherical distance so. In fact, from (3.18a) we have

s8 L.2(1-CoS50; Z s~n 2 t 2(Ž2 ) ~ 50 (3-19)
= - CoZ' 

Since s1 underestimates so, the horizontal height-height correlation HZZ(s1)

overestimates HZZ (so):

R"(s,- - e - es 

etS-9ts ----e °(3.20)
A Taylor series expansion shows that the maximum difference HZZ (s1) - HZZ (so)

occurs near sO = (59 ° of arc), where Hzz (s1) = 0.13589 and Hzz (sO) =

0.13534. A computer program verified that in fact,

al. bSoZ,(Cs. 0 O) o 0 0055 , (3.21)

0 I 1t
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and we conclude that the effect of the approximation s 
= s1 is negligible for

the height-height correlations.

Next we derive the formulas for the wind forecast error variances and for

the remaining forecast error correlations, based upon s =.s1, and show that the

effect of this approximation is still negligible. When s =s 1, we have from

(3.6a), (3.2), (3.18a) that

(3.22a)

(~ I _ 52 ) 0=, b dcossa1~~~~~ CO 5,
! -- --{ a 

and, differentiating again,

I C i Oa C ;(5,)
= b }zco0 so

1~-, 

(3.22b)

Comparing (3.7a) and (3.8a) with (3.22a,b) shows that the latter can be obtained

from the former simply by setting q = 1 and r = 0. Since (3.7a) and (3.8a)

were the basis forderiving the standard deviations (3.14) and correlations

(3.17), the new formulas for standard deviations and correlations are obtained

from the old ones merely by setting q = 1 and r = 0.

The functions a and r do not appear in formulas (3.14), so the wind fore-

cast error standard deviations based upon s = s1 are in fact still given by (3.14).

Setting q = 1 and r = 0 in (3.17) gives the correlation formulas for s = S1:

C-/ ' .=it -' .' IXF"' c~P ,I at l (3.23a)
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C UIcU

cvilct

CU% / c e

C- /C .1

C 17C k?

cvU.c

cuI SC

cV /cA

I *) l

=z | 'E ;4 2 

rS;' [~~FWFvL I + 1OIa= S: [YbFe + -Tb -r-O S419

c~~ J ~ f ~ F i v V D . 1

= 6,g' F

= $'I6ZFV

=$ $f7VV
I il 4 

Cut C v

C - C tu

C vt Cted

4- E- ec C C
cit C, t-

c ve, C I'l
* _w -E

As before, i and S are given by (3.16a,b) and the functions F' are given

by (3.10a-h). Formulas (3.23) are certainly simpler than formulas (3.17).

We prove rigorously in the Appendix that the differences between the

correlations given by (3.23a-h) and those given by (3.17a-h) are bounded as follows:

(3.24a)C(5,) - C" ( 5.) | ' T. ( ) 4 T- (s)

l -~~l)~ C"~5 )l /- TX(5.) +Y w 2 (S.) (3.24b)
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tV(S ) - CVaf.) 1 T T o + 67 (s.) (3. 24c)

c C (S8)- C (s' 4 T (se) 4- F TZ(se) (3.24d)

IC, s,) - C (.> | ' T(s.) + (+zYa )T2Lcs) + ( + )T3( (3-24e)

V C S) T C ( ) T (S) - ( 4-2--) T(, Z ( ) T3( ) (3.24f)

I CuU(SCUUS) I C T,(s.) +( , b2r) Tz(s0) +- T3 (s0) (3.24g)

| C (51) TC ( ,T(5, ) +(i+. zY ) T ( S i T3Cs.) (3.24h)

The functions Tj (so ) are functions of so (and b) alone, and are given by

T (SO) I (S (5 .) - Hl(5o) | I) (3.25a)

T, (cs. = | AH (S(SO) 3 H(SO) I-I(S.) | (3.25b)

%'T,3 - <Ls [l Ir(so- < l"< I b I I(<,.,),) -(SNSO) 14(S))I ,(3.25c)

No additional assumptions were made in deriving these bounds. They hold, for

example, regardless of the size of gradients of 7 . The bounds could be

improved by making assumptions regarding the size of these gradients, or by

sharpening some of the inequalities proven in the Appendix.

No such improvement appears to be necessary. A simple computer program

was written to determine the absolute maxima of the bounds (3.24, 3.25). The
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maximization was carried out over the interval O<so<3 only, since the factors q

and r become infinite at so=r . (This is simply a minor defect of the correlations

(3.17) based on the exact spherical distance: they all become infinite at so= T ,

and hence are valid correlation functions only on some interval O<so<Scrit with

the critical distance Scrit being just less than ~r . The reason for this

behavior is that for two points on opposite sides of the globe, i. e., so = 

small displacements of one of the points in opposite directions produce a large

change in the great circle arc of minimum length connecting the two points:

the arcs lie on opposite sides of the globe. Strictly speaking, for geostrophically

derived correlation functions of so to be legitimate, Cz (so) must approach

zero as so-+Trin such a way as to cancel this singularity. At any rate,

correlations (3.23) based on the straight-line distance s1 do not suffer this

technical problem.)

The computation determined that

I (() 4 oocz (3.26a)

for the wind-height correlations (3.24a-d),

\C (S.) - C (so I - O. O I's9 (3.26b)

for the wind-wind cross-correlations (3.24e,f), and

I C' (5()s C Id(SO)' I - oO.c017(3.26c)
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for the wind-wind auto-correlations (3.24g,h). It is unlikely that such small

differences as (3.26) would have a perceptible effect on analysis accuracy.

Indeed, it is unlikely that one can estimate forecast error correlations to

greater accuracy than this by any means in the near future.

III.3. Schlatter's approximation

The next approximation to the spherical distance so we consider is s = s2,

given by

5 ¢ ( 4z + (.-,2co( c (3.27)

This approximation was introduced by Schlatter (1975), and was used equatorward

of 70° in the global OI system at NMC until recently.

The order of accuracy of this formula relative to the spherical distance so

can be obtained by simple Taylor series expansions. It follows from (3.18a) that

2t -SO + L ( SO) S (3.28)

while from (3.18b),

52 =.- 4>z- + ))$ -- ,,-,¢ , (~-,'
(3.29a)

('~ t A +Z) I ( ^) COSOA COs+

Using the trigonometric identity

Cos Cos = cos ( *'2 Co) C ( si ,) 2- )

= Co5Z( 4±2) t O( ,-z )(3.29b)
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(3.29a) becomes

+ 4~~~~~~~~51 ( 4 -2) 4-zZc~ (Y+ + °) (( +- X ) ) 4 ( ) (3.30)
4 0 ((bI~c^> CeS4+, CoS4o2

Finally, combining (3.27), (3.28) and (3.30) yields

at y= St+ 0($9) +6( ,-+')

4, 4s COSIn O((',a,, cs4 1 cosh (3.3 1

Equation (3.28) shows that the straight-line distance s1 is a uniform

approximation to so, in the sense that the error depends only upon so and

not directly upon the location of points P1 and P2. Equation (3.31) shows, by

contrast, that s2 is a nonuniform approximation. The term - in

(3.31) can be absorbed into the term 0(S9) since definition (3.5b) of so

implies that j,'z-2l C-So. The latter two terms in (3.31), however, are not of

order 0(s$) , since small sO does not imply small -z as the pole is approached

Consequently, s2 has been used operationally at NMC equatorward of 70° only.

In passing, we point out that the second-to-last term in (3.31) is due to

approximating cO¢5jcOS% by CO5(• z), while the last term is due to approximating

2 [ -Cos(t-~D) by (-( D ~ . Removing either or both of these approximations

would yield correlations closer to those resulting from so or sj, but would not

simplify substantially the correlation formulas themselves. In fact, the

correlation formulas resulting from s2 are not substantially simpler than the

correlation formulas (3.23) based upon s1.
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To derive the correlation formulas for s2 , we use (3.6) and (3.2) to

find that

= 6 - I 5z
(3.32a)

[I2 5 (3.32b)

while, for s = s2 ,

49-0 - 2] = FUw

i1-I %I -F 'Cos ,

-C 1- 1 s1

7

-sI

t2 I SZiC = t-

I. I 5i
5 ~T NPO 2-

= Fu
Y. JI 52

_- Ie = FvvCO s 4'Co5 4 (3.33g,h)

where now

= - ( t1 -+Z) 4

F. U = 4-( ,--,,) + I (,++3)

I r
- cos+, (At 1 P [ I

= +. zes- I ^-z)

+Cos (k +42i)]

4- Co5 ( , ++L) I

(3.34a)

(3.34b)

(3.34c)

(3.34d)
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1)
(3.33a,b)

(3.33c,d)

(3.33e,f)

F

F-v

'� log C Fe

)5

~2�7- 10 C5'1

b-7 D I

%

L Is1

T "* 2.'�((Nj-( -5' (C+47-)F 07

= W UVco S + = FV cs+



.... ~ ! \ o .v
FUV = - 2C°5+l t1i1- ?i2 ) 51n (§} l4-2 ) (3.34e)

F "~ =U 20. k~, (A 5'. (~, *(3-34f)

FU= 4- 4- +4 Cos (01+§Z.) (3.34g)

F Cos4p cos5 I + Cos ('P+ -L)] (3-34h)

In calculating these derivatives, we have used the trigonometric identity

Co0z( i =L +Cose\

to replace (3.27) by

4' I(\rAL)l ± COS (4,±41 )] (3.35)

thus resulting in slightly simpler formulas.

The quantities defined in (3.34) all have the same limiting behavior as

P2 -- P1 as those defined in (3.10), namely that Fuu and Fvv approach one, while

the others approach zero. Therefore the wind forecast error standard deviations

based on s2 are identical to those based on so and s1 , namely (3.14a,b).

Furthermore, comparison of (3.32a,b) with (3.22a,b) and (3.7a, 3.8a), and

comparison of (3.33a-h) with (3.9a-h), shows that the correlation formulas for s2

are still given by (3.23a-h), but with the functions F- of (3.10) now replaced

by (3.34). Formulas (3.34) are comparable in computational complexity to

formulas (3.10).
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III.4. Currently operational approximation

Finally we consider the approximation s = s3 currently used equatorward

of 70° in the OI system at NMC,

52= ~I-+ 4 ( Al - b ,) Co S 'o . (3.36)

Here the angle Do is the latitude of the analysis point, either Ah or hi ,

but is treated as a constant when differentiating S3. Comparing (3.36) with

(3.27), it is clear that the correlation formulas based on S3 will be much

simpler than those based on s2.

These correlation formulas are easily derived by observing that

(3.33) still hold for s = s3, but with the quantities F now defined

(3.32),

by

FVI = o (CbI A)

F = - ( 61-(L Co4ta I

FU

U = I

, FU +(-+,..X)

F z v = t, ( ^,- A,) c'°s *
1 ~~~~~~C015 41,

F"v'O = 0

Fvv _ CoCS%
SO

I Costs1 cc>41

(3.37a,b)

(3.37c,d)

(3.37e,f)

(3.37g,h)

Again the correct limiting behavior is obtained as P2 --P 1, so that the wind

forecast error standard deviation formulas (3.14) still hold. As in the previous

subsection, the correlation formulas for s3 are still given by (3.23), but

with the functions F-- now given by (3.37).
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IV. Comparison of Correlation Functions for Different Distance Approximations

Here we compare graphically the correlation functions arising from the

exact spherical distance so, the Schlatter approximation s2, and the operationally-

used approximation S3. We have already proven that the correlation functions

based on the straight-line distance s1 are nearly indistinguishable from

those based on so.

In all cases shown here we have taken - 0 , so that there is

no contribution to the correlation functions from the forecast error variances.

Plots (not shown) in which gradients of 0j2 were present showed generally

similar errors among so-, s2- and s3- based correlation functions as in the

absence of c gradients. Plots of the correlation functions based on so, in

the presence of various nonconstant fields, were shown and discussed in

the companion paper.

We have plotted the correlation functions Z(si), z(si), CU(si),

CUU(si) and C'W(si) for i=0, 2, 3, at base points with +,= 70°N and +1 = 30°N.

In operational practice, while 70° is the dividing latitude, the choice of which

distance approximation to use is determined by the location of the analysis point,

not of the observations. If the absolute value of the latitude of the analysis

gridpoint is greater than or equal to 70°, a polar-sterographic distance approxima-

tion (not discussed here) is used, otherwise approximation s3 is used. Therefore,

if the analysis gridpoint is located equatorward of 70° yet two observations to be

used to analyze a value at that gridpoint between which a correlation must be

computed are located poleward of 70°, formulas derived from approximation S3

would still be used. Our plots comparing approximations s2 and S3 to the exact

spherical distance s1 at = 70°N can be considered to represent the maximum

error that would be possible in operational use. Figures la, b, c show
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CUV(so0), CUV(s2 ) and CuV(s3), respectively, for +!= 70°N. The correlations

based on s2 and s3 are roughly double the correlations based on so and are

more similar to each other than to the correlations based on so. The error

fields corresponding to Figs. la, b, c, namely CUV(s o ) - Cuv(s2) and CUU(so) -

CUV(s3), appear in Figs. 2a and b, respectively. In both cases, the errors

are nearly zero along the center line A Z= b , and gradually increase

with JAZ-Ž,> , as expected from (3.31). The maximum error in both cases is

about 0.18. We doubt that such a large error is negligible: analyses based

on so or s1 would often differ significantly from analyses based on s2 or s3.

The differences we have observed in the uv-correlation functions at 70°

were the largest of all those examined. For example, we show in Figs. 3a, b, c

the functions cUZ(so), Cuz(s2) and CUZ(s3 ), respectively still at 70°N, and

in Figs. 4a, b the corresponding difference fields CUZ(s o) - CUz(s2 ) and

CUZ(so) - Cuz(s3). The maximum error shown in Fig. 4a is less than 0.02,

while that in Fig. 4b is about 0.08. Correlation function errors less than

about 0.10 are likely to have a significant impact on analysis accuracy only

occasionally.

Differences in the remaining correlation functions at 70° were all less

than 0.02 for approximation s2, and were about 0.04, 0.04, and 0.08 for

CZz(so) - CZZ(s3), cUU(s ) - U(s3 ), and CVV(so) - CVv(s3), respectively.o (5)1 (so) Cuu(s3 ),-C'(

At 30°, the differences were all less than 0.02, except for CUV(so) - Cuv(s2),

CUV(so) - CUv(s3), and cUZ(so) - Cuz (s3), all of which were between 0.02 and

0.04.

V. Conclusions

We have derived and compared the forecast error correlation functions

arising from the use of four different distance formulas: the exact spherical
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distance so, the straight-line distance Sj, the Schlatter approximation s2,

and the operational approximation S3. We found that some correlations based

on s2 and s3 differ significantly from those based on so. We have proven

that all correlations based on s1 differ from those based on so by a negligible

amount over the entire sphere. Correlation formulas based on s1 require less

computational work than those based on so, about the same work as those based on

s2 and somewhat more work than those based on s3.

Our operating assumptions, made also in the OI formulation at NMC, were

that the height-height correlation is a Gaussian function of (approximate)

spherical distance s = si, and that the wind-height and wind-wind correlations are

related geostrophically to the height-height correlation. It is likely that

neither of these assumptions reflects in more than a crude way the actual

statistics of forecast errors. One should not expect, therefore, the correlations

we have derived based on s1 or so to lead to generally more accurate analyses

than those based on s2 or s3. On the other hand, as refinements in the

regional and global OI systems take place at NMC, it is important to bear in

mind the potential inaccuracies induced by approximate formulations of the

correlation functions.
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Appendix

Here we derive inequalities (3.24a-h) which show that the difference

between correlations based on the spherical distance so and those based on

the straight-line distance s1 is negligible. The derivations will make use of

the following relationships:

I V.'1 :/ I I _,8 S 1 me I 

i 1 S 9 1 , I os4j -

(A. la,b)

I (A.lc,d)

and for the functions F" defined in (3.10),

I F r) I 2 I

| F'"" F"" | "'

IF~'F'" ) A_

I FuF'U I '

I FU t Ff_ I:

1 Ft F;I /

Ji r --= any pair of u, v, zo

( I lfE ) 51

( , W 3 ) 5i

S I

S2.

Inequalities (A.la-e) follow immediately from definitions (3.16a,b) and

We prove (A.lf-i) at the end of this appendix.

(3.10Oa-h).

The bound on I IC ()-C ()I is derived first. From definitions

(3.17a) and (3.23a), we have
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(A.lf)

(A. 1g)

)

(A.lh)

(A. 1i)



v-v-- FUO [C (s,) -q( ( s)]
+ / I'I

a 1.5.

adeI [ Z (S)- C a(S.) 

I CI(s,) - CL, (s") I ! I | ,'" F" [CI(s,') - 5Cso) c"(s )]

-Ib
I

Lclis. -c"<so.) I

' irp I c c(,.) - c (s.) C, (s) I4- 1 -*51 C * (5b) I ,
where the triangle inequality and (A.1a, e, b) have been used. From (3.1) and

the fact that lI (p; D)!- , this gives

I C "s, )- Cb o(s 0) I -' 1 ,(s 1 ,- ,:s) I-"-Z } + I t - Io 1 (A-'2)>

A similar proof yields the identical result for the remaining wind-height

correlations, thus substantiating (3.24a-d).

We turn next to the wind-wind correlations. From (3.17e) and (3.23e),

Ci".(5, C((S i-- F UV Ct'( s1 S. -:(So)]

+ ,' 'r() Fs v" Fv C" (s )

. Cu(,,) CIv(s, ) /C , - C"%o' C( (SO) / C ( 0S) *
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C (Si) - CU"(So) =:

'01



Using the triangle inequality and (A.la, c, e), we get

j CUV(.5) - C "V (So) I I 1 C (s.) - Cs(S.) C L(s0) I

+ I '(s) FU FVC (s5) I

1 I CU* Cs " (S_)
~. C.c~ -) C"

According to (3.17a, d) and (3.23a, d),

CU (S, ) C (S ) C°(sDC Cv (S.)
C---o--

_ }' [Ib- s.) F "4 ' 11I Tb a -~4~ C L(SD) sZ r

,, 5 , Zb [f 'Z,-cC U sz 1- 'b C5a i z L C (s1)- CU(So ,)I

+. I' o Fu F C"s - V (S,) C '(01

I ' - a) J_-~,~ gb+,

(So) FV

C , 1~ C Sb) 3

± _I ~ C U1 (5,) -cl'5)

V Fb cos4t t+ (5,5 I

and with the triangle inequality and (A.la-e), we have

I C (, ,Z-C -- (s C U(5.) C tVCso.)
C '(Sb)

4 b I Fua F , I I Cs(,) -, (s,) CZ.(5.) |

4 C I C a"( S, ) - 1 (S.) C (Sc) 1 + I C S j - C I(5°) 
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Substituting the result and (A.2) into (A.3), and again using the fact that

1 , we have

( - I Ful F11 t V I(S,) H "(S.) I + b I -" (sS- l( : sJ)

I WA^(51') j T(So iV ( S.) I4 1 i (',, -H-<(S.)I
Similar derivations show that (A.4) holds

I C ( s') - CU ( so) I

also for I C vu (5) - CVU(s) I

ancL I Cv",(ts) - c"(so) I

provided that the factor I ' F V \ is replaced by
I fvaVzu

I FL" F'"1 a-t I Fv F ,1 respectively.

With (A.lf-i), this finishes the proof of (3.24e-h).

It remains to verify (A.lf-i). From (3.10c, d) and the trigonometric

inequality

S,,, , _ 2 ( - cos e) (A.5)
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lcUv 4 (, + zr )
(A.4)

(51< - C <(So'. I
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we have

F Fve F '2cos +,C05 +tz-C05 ( I1- t\

CZ

where definition (3.18b) has been used, thus verifying (A.li). To demonstrate

(A.lh), we have from (3.10a, b) that

F F =- -s;f (*, -) +t sin 4CCoS 2. oS +,Sn] s; (+-,')

+ 5I; ~,Sin + Co's +C05o2[ l C( ]

= -COS (I ( 4l 

+ Sin n 2CSCD t-Cs -^| 
so that

I FuF t I -C5 (A,-r.)Iit(c,-D)

e\ Sai (A5n u -COS (I 1- I(S coSd. 1 -c(-Z

' 2?[4I -cos (41-chjO -h + , -N -C'05

where again (A.5) has been used.
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Inequalities (A.lf, g) are more tricky. From (3.10a, d) we have

FUt FIv - 5'%r (ce,-tI,) Cos s I' ( a,-e2)

Cos 4>1 CCOS +X t\ C'os (,\I-t Sinl5; b-(\t)

Using the trigonometric equality

Sln~~~~~~ (- Si 2 Oz1~S; 3 CS(@~ E)~t n (B SS92

this becomes

p"t.F""^ ,- '(~.-4 ]) .;r (?Z-r2) ~ (s--, 4 ( s~,t) -

A5 C5in42 | COSw' ( ~ S-co +- 5;n ( 2.) ,
=~~~~ I 5ISns^(}3. (in+-;), ,^_>

so that

I FutF-:*vI c +E 1 5;n (IA- 2 . ) t5;rn 4- -n S;n +7 j \ (A.6)

Now, from the trigonometric identity

-LI -Cos(el-a) + 2 cos G, coseltI- COs(a, 0>) ,

we have

I
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.-A = - 5. i ( I- L)

L s -

I 1 - t05 ( +1~ § ) + 2 + c6

I -Cos ( 4 - c)

Now we use the inequality

2 1 ;K1

valid for all real numbers x, y, & , which follows from the fact that ( - )2.from the fact that -7

0 . This gives

2Z|5 In ( --1 1 t

El -# I S2(%' 2 7)I Ic (4 -+,)) 4 1i CD+ C0 +ft (X , =I1 )]+l C oS( 1 c-sL[i C b ( V j 5

z Et )ItI-os(,+D + V. cos, c es+, L 1 - cos (,-N I ~,)I I

where again (A.5) has been used.

4- -4 .-
4
&z.

Choosing

i.e.,
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we have finally

s g | t \ - Ct- (1 h -fL )1 A CI5 s;, 4, A- 5

Combining this last result with (A.6) yields (A.f). A similar proof gives (Ag).

Combining this last result with (A.6) yields (A.lf). A similar proof gives (A.lg).
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spherical distance so, (b) Schlatter's distance approximation s 2
and (c) the currently operational distance approximation s3 at
latitude 70°N. The contour interval is 0.1.
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The uz forecast error correlation as computed from (a) the exact
spherical distance so, (b) Schlat'ter's distance approximation s2and (c) the currently operational distance approximation s3 at
latitude 70°N. The contour interval is 0.1.
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Error fields portraying the difference between uv forecast error
correlations computed from the exact spherical distance so and (a)
Schlatter's distance approximation s2 and (b) the currently opera-
tional distance approximation s3. The contour interval is 0.02.

43

Figure 4.


